

श्री चित्रा तिरुनाल आयुर्विज्ञान और प्रौघोगिकी संस्थान,तिरुवनन्दपुरम् - ६९५ ०११,केरल, भारत SREE CHITRA TIRUNAL INSTITUTE FOR MEDICAL SCIENCES &TECHNOLOGY THIRUVANANTHAPURAM – 695 011 KERALA, INDIA

(An Institute of National Importance under Govt.of India)

(भारत सरकार के अघीन एक राष्ट्रीय महत्व सस्थान) Ph:0471-2443152, FAX: 0471-2446433,2550728 Fmail-sct@sctimst ac in Website - www.sctimst.ac in

WRITTEN TEST FOR MFCP TECHNICAL ASSISTANT (INSTRUMENTS) A TO B – CENTRAL ANALYTICAL FACILITY

Roll No.	

Date: 25.09.2024

Duration: 60 Minutes

Time: 9.00 A.M

Total Marks: 50

INSTRUCTIONS TO THE CANDIDATE

- 1. Write your Roll Number on the top of the Question Booklet and in the answer sheet.
- Write legibly the alphabet of the most appropriate answer in the separate answer sheet provided.
- 3. There will not be any Negative marking.
- 4. Over-writing is not permitted.
- 5. Candidate should sign in the question paper and answer sheet.
- No clarifications will be given.
- Candidate should hand over the answer sheet and question paper to the invigilator before leaving the examination hall.

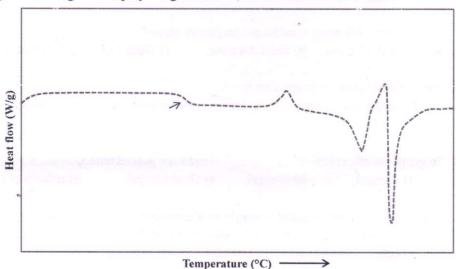
Signature of the Candidate

ofc

श्री चित्रा तिरुनाल आयुर्विज्ञान और प्रौद्योगिकी संस्थान, त्रिवेंद्रम केरल— 695 011, भारत SREE CHITRA TIRUNAL INSTITUTE FOR MEDICAL SCIENCES AND TECHNOLOGY, TRIVANDRUM KERALA — 695 011, INDIA

((एक राष्ट्रीय महत्व का संस्थान, विज्ञान एवं प्रौद्योगिकी विभाग, भारत सरकार)
(An Institution of National Importance, Department of Science and Technology, Govt. of India)
टेलीफॉन नं/.Telephone No. 0471-2443152 फाक्स/Fax: 0471-2446433,2550728
ई-मेल/E-mail: sct@sctimst.ac.in वेबसाइट/ Website: www.sctimst.ac.in

MFCP Examination – Written Test Technical Assistant (Instruments) A to B, Central Analytical Facility


Date of Examination: 24 September 2024

1.	Who is considered to be the father of chromatography techniques? a) J Heyrovsky, b) M Tswett, c) H Pinter, d) F Blotch							
2.	In the Raman spectroscopic analysis Nd: YAG laser is commonly used as a source for monochromatic radiations. YAG is a) Yellow aligned grating, b) Yttrium aligned grating, c) Yttrium aluminum garnet, d) Ytterbium aligned grating							
3.	a) Melting point, b) Polarity c) Vapor pressure, d) point group							
4.	Which of the following constitutes a stationary phase? a) Neutral Alumina, b) Basic Alumina, c) Silica Gel, d) All of these							
5.	Payne Permeability cups are used for							
6.	In gel permeation chromatography the columns are packed with							
7.	The number average molecular weight of a polymer was estimated by GPC analysis as 45 kDa. What will be its weight average molecular mass if PDI is 1.2? a) 50 kDa, b) 54 kDa, c) 90 kDa, d) 37.5 kDa							
8.	In chromatography, which of the following can the mobile phase be made of? a) Solid or liquid, b) Liquid or gas, c) Gas only, d) Liquid only							

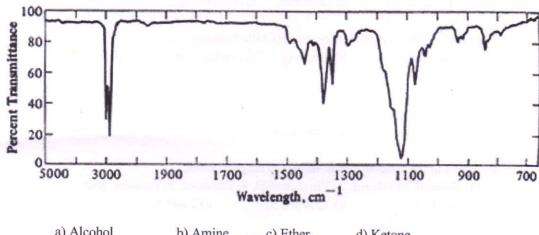
Page 1 of 7

मृख एम.टी.स्कंध Head, BMT Wing

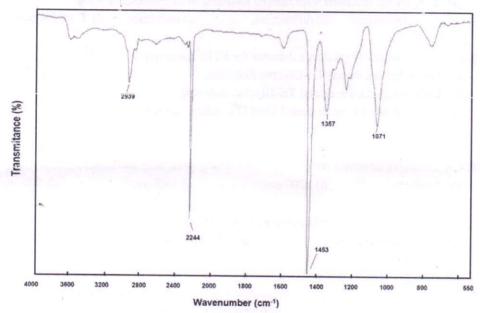
9. Which one is known as the universal detector for GPC analysis? a) RI detector, b) UV detector, c) Fluorescent detector, d) ELS detector 10. ESI detector is employed in mass spectrometry. ESI stands for.....? a) Electrical supported ionization, b) Electronic state ionization, c) Electrospray ionization, d) Electrospin ionization 11. Ethylene when passed over Ag in the presence of oxygen resulted in the formation of....... a) Ethylene glycol, b) Ethanol, c) Ethylene oxide, d) Ethanal 12. Van Deemter plot is used for the determination of a) The selectivity factor, b) The Optimum mobile phase flow rate, c) Optimum column temperature, d) Optimum column length 13. Resolution is proportional to the..... a) number of theoretical plates in a column, b) square root of the number of theoretical plates in a column, c) square of the number of theoretical plates in a column d) cube root of the number of theoretical plates in a column 14. Derivatisation of analytes is often carried out to a) Improve detector response, b) increase the volatility of analyte, c) improve polarity of analyte, d) all of these. 15. In the given thermogram of a polymer given below, the marked thermal transition is

a) Glass transition temperature,d) decomposition temperature

b) crystallization temperature, c) melting temperature,


Page 2 of 7

प्रमुख, बी एए टी.स्कंश Head, E.AT Wing


16.		ring GC analysis col Avoid analyte cond broadening,			articular temper rol elution of an			
17.	Thea)	e internal diameter o Sample capacity,		- D			 ducibility	
18.	Elu a)	ntion of traces of stat Scotching,	ionary phase is o b) Bleeding,			d) Erosi	ion	
19.	dyı	GC detector should hamic range, 4) shou All of these,		ctive, 5)	volatile compor	nents		
20.		nich of the following Ethanol, 2) Ethanal a) Only 2		ol, 4) Eth	anone, 5) Ethan	noic acid	d) None o	of these
21.		based pellets are nsmission mode. a) Sodium Chlorid iodide						
22.	the	R mode of FTIR and ATR crystal mount a) Interference,	ed with sample r	esulting		t wave.	tions pass	`,
23.	a)b)c)	GS is commonly use Dibutylamine dope Deuterated alanine Deuterated asparag Deuterated arginine	d Tri-Glycine Su doped Tri-Glyci ine doped Thio-	ılphate, ne Sulpl Guanidir	nate ne Sulphate,	DTGS is		
24.		stretching of nitrile 3300 cm ⁻¹	compounds form b) 2200 cm ⁻¹	n strong	stretching vibra c) 1800 cm ⁻¹	tions aro	und d) 900 cm	 1 ⁻¹
25.		ork-Howink equation Oxidation Potential d) Absorbance			ass of a macromelle Concentration			c viscosity
26.		r a monodisperse pol Twice the value of d) none of thes	M _{w.} b) half		ge molecular we e of M _w		will be Il to Mw	

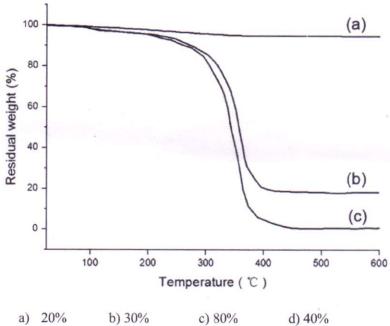
Page 3 of 7

- 27. Cobalt 60 is a commonly used chemical in radiation therapy of cancer patients because it emits.....
 - a) Visible light
- b) X-rays
- c) neutrons
- d) Gamma Rays
- 28. FTIR spectrum of a compound is given below. It could be

- a) Alcohol
- b) Amine
- c) Ether
- d) Ketone
- 29. Ram prepared a 0.00001 M solution of a monobasic acid for titration experiments. If the acid is completely ionized, what would be the pH of the solution?
 - a) 9.0
- b) 5.0
- c) 7.4
- d) 3.0
- 30. FTIR analysis of a polymer yielded the following spectrum. It can be.....

- a) Poly (ethylene terephthalate) d) Teflon
- b) Poly(propylene)
- c) Poly(acrylonitrile),

Page 4 of 7


*								
31. The color of nanon	naterials is due to							
a) Diffraction	b) nuclear mag	gnetic resonance	c) surface plasmon resonance					
d) Larmou	r resonance							
32. The electronic tran	sition from triplet ex		ound state will result in					
a) Fluorescence	b) Phosphores	cence c) Senescence	d) None of these					
albania come decimal se describino								
			same angle is called					
a) Total reflection	b) specular ref	lection c) Diffuse ref	lection d) none of these					
34. 1 MPa =	NT/m2							
a) 2.5×10^6	N/III							
b) 1.0 x 10 ⁵								
c) 1.0×10^6								
d) 2.5×10^3								
25 5 11 11	1 1 1 1	200 1215	.11 - 1					
	10 10111111	en 280 and 315 nm are o	called					
a) UVA b)	UVB c) UV	C d) UVD						
26 Thormogravimetri	a analysis of Calciur	n ovalate nentahvdrate i	inder nitrogen atmosphere yields a					
			after the final degradation?					
AND THE RESERVE OF THE PERSON	Ca_3N_2 c) Ca_3							
u) Cu 0)	043112	3						
37. During the HPLC	analysis of Curcumi	n, the analyst unknowing	gly doubled the mobile phase's					
		if all other parameters						
	a) Retention time will decrease, b) Retention time will increase, c) Peak area							
will decrease,	d) No change							
			can be called as					
a) Hydrophilic	b) amphiphilic	c) hydrophob	ic d) hydrostatic					
			672 - N/ H					
			surface tension of 72 mN/m. How					
	hange with increasing		b) Viscosity will increase and					
	n will decrease	e tension will increase c) Both will decrease	d) Both will increase					
surface tension	i will decrease	c) Both will decrease	d) Both will increase					
40 O-H bond of ethar	nol vibrates at 3300 o	cm ⁻¹ . What will be the vi	bration frequency of O-D bond in					
deuterated ethanol			, , , , , , , , , , , , , , , , , , ,					
a) 3300 cm ⁻¹	b) 3400 cm ⁻¹	c) 2400 cm ⁻¹	d) 1800 cm ⁻¹					

Page **5** of **7**

41.	41. Usually, the cuvettes used for UV spectroscopic analysis are made of Quartz. Quartz is chemically									
	a)	ZnO	b) TiO ₂		c) SiO ₂		d) Al ₂ O ₃			
42. Most of the regulatory agencies demand strict compliance of all materials used for electronic, and medical applications with the RoHS directive. RoHS is a) Regulation of harmful substances c) Regulation of health statistics d) Restriction of harmful substances						 ous substances	rical,			
43.							c) Melting point		d) Residual so	lvent
44.	are	described in	n			esid	ual ethylene oxide			
45.	Th		ition tem	perature rature,		pelo	w room temperatu		d) ISO 10993-	11
46.							e determination o			
47.		Using refer					ult can be ensured analysis			parisons
48.			ent 163, t	he test re	sult of the la	abor	lited agency, Lab atory is			
49.		Statistical of		ons			timation by using specification			

Page **6** of **7**

50. In the thermogram given below sample 'b' is a composite formed by combining an organic flow sample of polymer 'c' with an inorganic filler 'a'. Approximately how much polymer will be in the partic filler 'a'. Approximately how much polymer will be in the partic filler 'a'.

Page 7 of 7

श्री चित्रा तिरुनाल आयुर्विज्ञान और प्रौद्योगिकी संस्थान, त्रिवेंद्रम केरल— 695 011, भारत SREE CHITRA TIRUNAL INSTITUTE FOR MEDICAL SCIENCES AND TECHNOLOGY, TRIVANDRUM KERALA — 695 011, INDIA

((एक राष्ट्रीय महत्व का संस्थान, विज्ञान एवं प्रौद्योगिकी विभाग, भारत सरकार)
(An Institution of National Importance, Department of Science and Technology, Govt. of India)
टेलीफॉन नं/.Telephone No. 0471-2443152 फाक्स/Fax: 0471-2446433,2550728
ई-मेल/E-mail: sct@sctimst.ac.in वेबसाइट/ Website: www.sctimst.ac.in

MFCP Examination – Answer Key Technical Assistant (Instruments) A to B, Central Analytical Facility

Date of Examination: 24 September 2024

- 1. b) M Tswett
- 2. c) Yttrium aluminum garnet
- 3. b) Polarity
- 4. d) All of these
- 5. d) Water vapor transmission rate analysis
- 6. d) either b or c
- 7. b) 54 kDa
- 8. b) Liquid or gas,
- 9. a) RI detector
- 10. c) Electrospray ionization
- 11. c) Ethylene oxide
- 12. b) The optimum mobile phase flow rate
- 13. b) square root of the number of theoretical plates in a column
- 14. d) all of these.
- 15. a) Glass transition temperature
- 16. d) all of these
- 17. b) resolution
- 18. b) Bleeding
- 19. c) 1,2,3, and 4
- 20. c) 2 and 3
- 21. c) Potassium bromide
- 22. d) Total internal reflection
- 23. b) Deuterated alanine doped Tri-Glycine Sulphate
- 24. b) 2200 cm⁻¹
- 25. c) Intrinsic viscosity
- 26. c) Equal to Mw

- 27. d) Gamma Rays
- 28. c) Ether
- 29. b) 5.0
- 30. c) Poly(acrylonitrile)
- 31. c) surface plasmon resonance
- 32. b) Phosphorescence
- 33. b) specular reflection
- 34. c) 1.0 x 10⁶
- 35. b) UVB
- 36. c) CaO
- 37. a) Retention time will decrease
- 38. c) hydrophobic
- 39. c) Both will decrease
- 40. c) 2400 cm⁻¹
- 41. c) SiO₂
- 42. b) Restriction of hazardous substances
- 43. c) Melting point
- 44. b) ISO 10993-7
- 45. b) below room temperature
- 46. b) Du Nouy ring method
- 47. d) all of these.
- 48. b) questionable
- 49. a) Statistical calculations
- 50. c) 80%